Charge Pump Design

Additional Slides

Vishal Saxena
ECE, Boise State University

Nov 02, 2010
Introduction

- Charge pumps are widely used to generate voltages beyond normal supply range
 - high voltages for programming and erasing of floating gate in EEPROMs and Flash memories
 - negative voltages for substrate bias for reducing leakage in certain digital designs

- Typically generate 16-18V from 1.8V supply for program and erase in a Flash memory
 - have multiple program voltages in multi-level cell (MLC) Flash memory

- A Closed loop-system with pump output voltage regulation is typically employed
Introduction

- Charge pumps are widely used to generate voltages beyond normal supply range
 - high voltages for programming and erasing of floating gate in EEPROMs and Flash memories
 - negative voltages for substrate bias for reducing leakage in certain digital designs
- Typically generate 16-18V from 1.8V supply for program and erase in a Flash memory
 - have multiple program voltages in multi-level cell (MLC) Flash memory
- A Closed loop-system with pump output voltage regulation is typically employed
Introduction

- Charge pumps are widely used to generate voltages beyond normal supply range
 - high voltages for programming and erasing of floating gate in EEPROMs and Flash memories
 - negative voltages for substrate bias for reducing leakage in certain digital designs
- Typically generate 16-18V from 1.8V supply for program and erase in a Flash memory
 - have multiple program voltages in multi-level cell (MLC) Flash memory
- A Closed loop-system with pump output voltage regulation is typically employed
Introduction

- Charge pumps are widely used to generate voltages beyond normal supply range
 - high voltages for programming and erasing of floating gate in EEPROMs and Flash memories
 - negative voltages for substrate bias for reducing leakage in certain digital designs
- Typically generate 16-18V from 1.8V supply for program and erase in a Flash memory
 - have multiple program voltages in multi-level cell (MLC) Flash memory
- A Closed loop-system with pump output voltage regulation is typically employed
Introduction

- Charge pumps are widely used to generate voltages beyond normal supply range
 - high voltages for programming and erasing of floating gate in EEPROMs and Flash memories
 - negative voltages for substrate bias for reducing leakage in certain digital designs

- Typically generate 16-18V from 1.8V supply for program and erase in a Flash memory
 - have multiple program voltages in multi-level cell (MLC) Flash memory

- A Closed loop-system with pump output voltage regulation is typically employed
Introduction

- Charge pumps are widely used to generate voltages beyond normal supply range
 - high voltages for programming and erasing of floating gate in EEPROMs and Flash memories
 - negative voltages for substrate bias for reducing leakage in certain digital designs
- Typically generate 16-18V from 1.8V supply for program and erase in a Flash memory
 - have multiple program voltages in multi-level cell (MLC) Flash memory
- A Closed loop-system with pump output voltage regulation is typically employed
- Cascade more number of stages
- Two-phase clock used for charge transfer during both the phases
Dickson Charge Pump

- Cascade more number of stages
- Two-phase clock used for charge transfer during both the phases
Dickson Charge Pump Operation

- Assume, small capacitive load and negligible parasitics. Neglect body effect.

\[V_{out} = N(V_{DD} - V_{THN}) \]
Dickson Charge Pump Operation

- Assume, small capacitive load and negligible parasitics. Neglect body effect.

\[V_{out} = N(V_{DD} - V_{THN}) \]
Dickson Charge Pump Operation

- Assume, small capacitive load and negligible parasitics. Neglect body effect.

- \(V_{\text{out}} = N(V_{\text{DD}} - V_{\text{THN}}) \)
Dickson Charge Pump Operation

- Assume, small capacitive load and negligible parasitics. Neglect body effect.
- \[V_{out} = N(V_{DD} - V_{THN}) \]
Dickson Charge Pump Operation

- Assume, small capacitive load and negligible parasitics. Neglect body effect.
- \(V_{out} = N(V_{DD} - V_{THN}) \)
Assume, small capacitive load and negligible parasitics. Neglect body effect.

\[V_{out} = N(V_{DD} - V_{THN}) \]
Four-phase Charge Pump

- Bootstrap the gates of the charge transfer devices \((M_1, M_3, \ldots)\) to avoid the \(V_{THN}\) drop

Vishal Saxena | Charge Pump Design

5/25
Precharge the gate of the charge transfer device M_1 (i.e. node n_a) in one half-cycle and discharge in the other half.

- C_{b1} is the boosting capacitor.
- Boost the node n_a by V_{DD} in the charge transfer phase (ϕ_2 is high).
- Full charge is passed from n_1 to n_2.
- V_{THN} drop is cancelled!
- Precharge the gate of the charge transfer device M_1 (i.e. node n_a) in one half-cycle and discharge in the other half
- C_{b1} is the boosting capacitor
 - boost the node n_a by V_{DD} in the charge transfer phase (ϕ_2 is high)
 - full charge is passed from n_1 to n_2
 - V_{THN} drop is cancelled!
Precharge the gate of the charge transfer device M_1 (i.e. node n_a) in one half-cycle and discharge in the other half

- C_{b1} is the boosting capacitor
 - boost the node n_a by V_{DD} in the charge transfer phase (ϕ_2 is high)
 - full charge is passed from n_1 to n_2
 - V_{THN} drop is cancelled!
Precharge the gate of the charge transfer device M_1 (i.e. node n_a) in one half-cycle and discharge in the other half.

- C_{b1} is the boosting capacitor
 - boost the node n_a by V_{DD} in the charge transfer phase (ϕ_2 is high)
 - full charge is passed from n_1 to n_2
 - V_{THN} drop is cancelled!
- Precharge the gate of the charge transfer device M_1 (i.e. node n_a) in one half-cycle and discharge in the other half
- C_{b1} is the boosting capacitor
 - boost the node n_a by V_{DD} in the charge transfer phase (ϕ_2 is high)
 - full charge is passed from n_1 to n_2
 - V_{THN} drop is cancelled!
Four-phase Charge Pump

- Overlap between ϕ_1 and ϕ_3 by roughly 10% of T_{CK}
 - Precharge gate of the transfer device to its drain potential before bootstrapping occurs
 - Prevent backward leakage of charge
- ϕ_2 and ϕ_4 are used to boost the potential of nodes n_a and n_b resp.
 - ϕ_2 shouldn’t overlap with ϕ_3 in high phase
 - ϕ_4 shouldn’t overlap with ϕ_1 in high phase
Four-phase Charge Pump

- Overlap between ϕ_1 and ϕ_3 by roughly 10% of T_{CK}
- Precharge gate of the transfer device to its drain potential before bootstrapping occurs
- Prevent backward leakage of charge
- ϕ_2 and ϕ_4 are used to boost the potential of nodes n_a and n_b respectively.
- ϕ_2 shouldn’t overlap with ϕ_3 in high phase
- ϕ_4 shouldn’t overlap with ϕ_1 in high phase
Basic Concept Dickson Charge Pump 4-phase Charge Pump Non-overlapping Clocks Voltage Regulation

Four-phase Charge Pump

- Overlap between ϕ_1 and ϕ_3 by roughly 10% of T_{CK}
- Precharge gate of the transfer device to its drain potential before bootstrapping occurs
- Prevent backward leakage of charge
- ϕ_2 and ϕ_4 are used to boost the potential of nodes n_a and n_b resp.
- ϕ_2 shouldn’t overlap with ϕ_3 in high phase
- ϕ_4 shouldn’t overlap with ϕ_1 in high phase
Four-phase Charge Pump

- Overlap between ϕ_1 and ϕ_3 by roughly 10% of T_{CK}
- Precharge gate of the transfer device to its drain potential before bootstrapping occurs
- Prevent backward leakage of charge
- ϕ_2 and ϕ_4 are used to boost the potential of nodes n_a and n_b resp.
 - ϕ_2 shouldn’t overlap with ϕ_3 in high phase
 - ϕ_4 shouldn’t overlap with ϕ_1 in high phase
Four-phase Charge Pump

- Overlap between ϕ_1 and ϕ_3 by roughly 10% of T_{CK}
 - precharge gate of the transfer device to its drain potential before bootstrapping occurs
 - prevent backward leakage of charge
- ϕ_2 and ϕ_4 are used to boost the potential of nodes n_a and n_b resp.
 - ϕ_2 shouldn’t overlap with ϕ_3 in high phase
 - ϕ_4 shouldn’t overlap with ϕ_1 in high phase
- Overlap between ϕ_1 and ϕ_3 by roughly 10% of T_{CK}
 - precharge gate of the transfer device to its drain potential before bootstrapping occurs
 - prevent backward leakage of charge
- ϕ_2 and ϕ_4 are used to boost the potential of nodes n_a and n_b resp.
 - ϕ_2 shouldn’t overlap with ϕ_3 in high phase
 - ϕ_4 shouldn’t overlap with ϕ_1 in high phase
Assume steady-state conditions

- ϕ_1 goes high \rightarrow n_a is precharged to $2V_{DD} - V_{THN}$
- ϕ_3 goes low \rightarrow M_2 is off
- ϕ_2 goes high \rightarrow n_a is bootstrapped to $3V_{DD} - V_{THN}$
 - full charge is transferred through M_1
- ϕ_3 goes high \rightarrow n_b is precharged to $3V_{DD} - V_{THN}$
- ϕ_1 goes low \rightarrow M_4 is off
- ϕ_4 goes high \rightarrow n_b is bootstrapped to $4V_{DD} - V_{THN}$
 - full charge is transferred through M_2
Assume steady-state conditions

- \(\phi_1 \) goes high \(\rightarrow n_a \) is precharged to \(2V_{DD} - V_{THN} \)
- \(\phi_3 \) goes low \(\rightarrow M_2 \) is off
- \(\phi_2 \) goes high \(\rightarrow n_a \) is bootstrapped to \(3V_{DD} - V_{THN} \)
 - full charge is transferred through \(M_1 \)
- \(\phi_3 \) goes high \(\rightarrow n_b \) is precharged to \(3V_{DD} - V_{THN} \)
- \(\phi_1 \) goes low \(\rightarrow M_4 \) is off
- \(\phi_4 \) goes high \(\rightarrow n_b \) is bootstrapped to \(4V_{DD} - V_{THN} \)
 - full charge is transferred through \(M_2 \)
Four-phase Charge Pump Operation

- Assume steady-state conditions
- \(\phi_1 \) goes high \(\rightarrow n_a \) is precharged to \(2V_{DD} - V_{THN} \)
- \(\phi_3 \) goes low \(\rightarrow M_2 \) is off
- \(\phi_2 \) goes high \(\rightarrow n_a \) is bootstrapped to \(3V_{DD} - V_{THN} \)
- Full charge is transferred through \(M_1 \)
- \(\phi_3 \) goes high \(\rightarrow n_b \) is precharged to \(3V_{DD} - V_{THN} \)
- \(\phi_1 \) goes low \(\rightarrow M_4 \) is off
- \(\phi_4 \) goes high \(\rightarrow n_b \) is bootstrapped to \(4V_{DD} - V_{THN} \)
- Full charge is transferred through \(M_2 \)
Four-phase Charge Pump Operation

- Assume steady-state conditions
- ϕ_1 goes high \rightarrow n_a is precharged to $2V_{DD} - V_{THN}$
- ϕ_3 goes low \rightarrow M_2 is off
- ϕ_2 goes high \rightarrow n_a is bootstrapped to $3V_{DD} - V_{THN}$
 - full charge is transferred through M_1
- ϕ_3 goes high \rightarrow n_b is precharged to $3V_{DD} - V_{THN}$
- ϕ_1 goes low \rightarrow M_4 is off
- ϕ_4 goes high \rightarrow n_b is bootstrapped to $4V_{DD} - V_{THN}$
 - full charge is transferred through M_2
Basic Concept Dickson Charge Pump 4-phase Charge Pump Non-overlapping Clocks Voltage Regulation

Four-phase Charge Pump Operation

- Assume steady-state conditions
- ϕ_1 goes high \rightarrow n_a is precharged to $2V_{DD} - V_{THN}$
- ϕ_3 goes low \rightarrow M_2 is off
- ϕ_2 goes high \rightarrow n_a is bootstrapped to $3V_{DD} - V_{THN}$
 - full charge is transferred through M_1
- ϕ_3 goes high \rightarrow n_b is precharged to $3V_{DD} - V_{THN}$
- ϕ_1 goes low \rightarrow M_4 is off
- ϕ_4 goes high \rightarrow n_b is bootstrapped to $4V_{DD} - V_{THN}$
 - full charge is transferred through M_2
Assume steady-state conditions

- ϕ_1 goes high $\rightarrow n_a$ is precharged to $2V_{DD} - V_{THN}$
- ϕ_3 goes low $\rightarrow M_2$ is off
- ϕ_2 goes high $\rightarrow n_a$ is bootstrapped to $3V_{DD} - V_{THN}$
 - full charge is transferred through M_1
- ϕ_3 goes high $\rightarrow n_b$ is precharged to $3V_{DD} - V_{THN}$
- ϕ_1 goes low $\rightarrow M_4$ is off
- ϕ_4 goes high $\rightarrow n_b$ is bootstrapped to $4V_{DD} - V_{THN}$
 - full charge is transferred through M_2
Basic Concept Dickson Charge Pump Four-phase Charge Pump Non-overlapping Clocks Voltage Regulation

Four-phase Charge Pump Operation

- Assume steady-state conditions
- ϕ_1 goes high $\rightarrow n_a$ is precharged to $2V_{DD} - V_{THN}$
- ϕ_3 goes low $\rightarrow M_2$ is off
- ϕ_2 goes high $\rightarrow n_a$ is bootstrapped to $3V_{DD} - V_{THN}$
 - full charge is transferred through M_1
- ϕ_3 goes high $\rightarrow n_b$ is precharged to $3V_{DD} - V_{THN}$
- ϕ_1 goes low $\rightarrow M_4$ is off
- ϕ_4 goes high $\rightarrow n_b$ is bootstrapped to $4V_{DD} - V_{THN}$
 - full charge is transferred through M_2
Other Architectures: Controllable Body Voltage

- Adjust bulk voltage to get rid of the body effect [3].
- Better than Dickson CP, but V_{THN0} drop still exists.
- Adjust bulk voltage to get rid of the body effect [3].
- Better than Dickson CP, but V_{THN0} drop still exists.
Non-Overlapping Clocks

\[\text{CK} \quad ? \quad \phi_1 \quad \phi_2 \quad \text{CK} \quad \phi_1 \quad \phi_2 \]
Non-Overlapping Clocks
Non-Overlapping Clocks: State Machine

State Diagram

- States: 01, 00, 10
- Transitions:
 - From 01 to 00: CK = 1, φ1 = 0, φ2 = 0
 - From 00 to 10: CK = 1, φ1 = 1, φ2 = 1
 - From 00 to 00: CK = 1, φ1 = 1, φ2 = 0

Truth Table

<table>
<thead>
<tr>
<th>CK</th>
<th>φ1</th>
<th>φ2</th>
<th>φ′1</th>
<th>φ′2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Non-Overlapping Clocks: Karnaugh Maps

\[
\begin{array}{c|ccccc}
\text{CK}/\phi_1 \phi_2 & 00 & 01 & 11 & 10 \\
\hline
0 & 0 & 0 & X & 0 \\
1 & 1 & 0 & X & 1 \\
\end{array}
\]

\[
\phi'_1 = CK \cdot \overline{\phi_2} = \overline{CK} \cdot \phi_2
\]

\[
\begin{array}{c|ccccc}
\text{CK}/\phi_1 \phi_2 & 00 & 01 & 11 & 10 \\
\hline
0 & 0 & 1 & 1 & X & 0 \\
1 & 0 & 0 & X & 0 \\
\end{array}
\]

\[
\phi'_2 = \overline{CK} \cdot \overline{\phi_1} = \overline{CK} \cdot \phi_1
\]
Non-Overlapping Clocks: Generation Circuit 1

- Implements logic $\phi_1' = CK \cdot \overline{\phi_2}$ and $\phi_2' = \overline{CK} \cdot \overline{\phi_1}$
- Non-overlap time is set by the NAND’s t_{pLH}
Non-Overlapping Clocks: Generation Circuit 1

- Implements logic $\phi_1' = CK \cdot \overline{\phi_2}$ and $\phi_2' = \overline{CK} \cdot \overline{\phi_1}$
- Non-overlap time is set by the NAND’s t_{PLH}
Can increase non-overlap time by inserting extra delay
- Insert a matched delay to the inverter for perfect timing.
Another topology with larger non-overlap time.
The following circuit generates four non-overlapping clock phases.

The phase alignment for 4-phase charge pump is slightly different. Think about it!

Figure 2.38 Generating a four-phase non-overlapping clock signal.
The following circuit generates four non-overlapping clock phases.

![Circuit Diagram]

Figure 2.38 Generating a four-phase non-overlapping clock signal.

The phase alignment for 4-phase charge pump is slightly different. Think about it!
Regulated Charge Pump

- Feedback to regulate the charge pump output to a desired voltage
- A sensing circuit compares the pump output to a reference and enables the clock
- A simple method is to switch the ring oscillator on and off
- Large ripples in the output
Regulated Charge Pump

- Feedback to regulate the charge pump output to a desired voltage
- A sensing circuit compares the pump output to a reference and enables the clock
- A simple method is to switch the ring oscillator on and off
 - large ripples in the output
Regulated Charge Pump

- Feedback to regulate the charge pump output to a desired voltage
- A sensing circuit compares the pump output to a reference and enables the clock
- A simple method is to switch the ring oscillator on and off
 - large ripples in the output
Regulated Charge Pump

- Feedback to regulate the charge pump output to a desired voltage
- A sensing circuit compares the pump output to a reference and enables the clock
- A simple method is to switch the ring oscillator on and off
 - large ripples in the output
- Cap values C_1 and C_2 change with parasitics.
- Capacitive loading on the pump (may be insignificant w.r.t. C_L)
- Faster feedback control.

![Diagram of Capacitive divider feedback control](image)

Figure 4-19 Capacitive divider feedback control.
- Cap values C_1 and C_2 change with parasitics.
- Capacitive loading on the pump (may be insignificant w.r.t. C_L)
- Faster feedback control.

Figure 4-19 Capacitive divider feedback control.
Pump Regulation: Capacitor Divider

- Cap values C_1 and C_2 change with parasitics.
- Capacitive loading on the pump (may be insignificant w.r.t. C_L)
- Faster feedback control.

![Diagram of Capacitive Divider Feedback Control]

Figure 4-19 Capacitive divider feedback control.
Resistors may load the pump output.

- Use large resistors → Large layout area
- RC delay

![Diagagram](Image)
Resistors may load the pump output.

- Use large resistors → Large layout area
- RC delay

Figure 4-20: Resistive divider feedback control.
Resistors may load the pump output.

- Use large resistors → Large layout area

- RC delay

Figure 4-20: Resistive divider feedback control.
Resistors may load the pump output.

- Use large resistors → Large layout area

Figure 4-20 Resistive divider feedback control.
- Resistors may load the pump output.
- Use large resistors \rightarrow Large layout area

![Resistive divider feedback control diagram](Figure 4-20)
Use a NAND gate in the ring, while ensuring there are odd number of inverting stages
Use a voltage-controlled oscillator (VCO) for smoother regulation of the output[5].

- cleaner VCO switching leads to much lower pump output ripples.
VCO based Regulation

- Use a voltage-controlled oscillator (VCO) for smoother regulation of the output[5].
 - cleaner VCO switching leads to much lower pump output ripples.
Automatically tune the buffer strength to regulate the output[5].
References I

