OPAMP DESIGN PROJECT

(a) V_{CM} - \frac{v_{in}}{2} - \frac{v_{in}}{2}

(b) V_{CM} \frac{v_{in}}{2} - \frac{v_{in}}{2}

ECE415/EO

ECE515
DESIGN SPECIFICATIONS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Spec. for ECE 415</th>
<th>Spec. for ECE 515</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology</td>
<td>TSMC 180n CMOS</td>
<td></td>
</tr>
<tr>
<td>Supply voltage, V_{DD}</td>
<td>1.8V</td>
<td></td>
</tr>
<tr>
<td>Common-mode voltage, V_{CM}</td>
<td>0.9V</td>
<td></td>
</tr>
<tr>
<td>Typical load</td>
<td>$100k\Omega</td>
<td></td>
</tr>
<tr>
<td>Unit gain frequency (f_{un})</td>
<td>> 50 MHz</td>
<td>_</td>
</tr>
<tr>
<td>Open-loop gain (A_{OL})</td>
<td>> 60 dB</td>
<td>_</td>
</tr>
<tr>
<td>Closed-loop gain (A_{CL})</td>
<td>≥ 1</td>
<td>2</td>
</tr>
<tr>
<td>Closed-loop bandwidth ($f_{3dB,CL}$)</td>
<td>_</td>
<td>> 20 MHz</td>
</tr>
<tr>
<td>Slew-rate (SR)</td>
<td>> $100 \frac{V}{\mu s}$</td>
<td></td>
</tr>
<tr>
<td>Phase margin (ϕ_M)</td>
<td>60°</td>
<td></td>
</tr>
<tr>
<td>Output swing</td>
<td>> $0 \cdot 75V_{DD}$</td>
<td>> $1.5 \cdot V_{DD}$</td>
</tr>
<tr>
<td>Power consumption</td>
<td>Minimum possible</td>
<td></td>
</tr>
</tbody>
</table>
Figure 24.1 Block diagram of two-stage op-amp with output buffer.
Parameters from Table 9.2 with biasing circuit from Fig. 20.47. Unlabeled NMOS are 50/2 and PMOS are 100/2. Scale factor is 50 nm.

Figure 24.2 Basic two-stage op-amp.
MILLER COMPENSATION EQUATIONS

\[A_v = g_{m1}R_1g_{m2}R_2 \]

\[\omega_{p1} \approx \frac{1}{g_{m2}R_2R_1C_c} \]

\[\omega_{p2} \approx \frac{g_{m2}C_c}{C_2(C_1+C_c)+C_CC_1} = f\left(\frac{g_{m2}}{C_2}\right) \]

\[\omega_z \approx \frac{g_{m2}}{C_c} \]

\[\omega_{un} \approx \frac{g_{m1}}{C_c} \]

\[\omega_{z, nulling-R} \approx \frac{1}{\frac{1}{g_{m2}-R_z}C_c} \]
Figure 24.15 Making the zero-nulling resistor process independent.
VOLTAGE BUFFER COMPENSATION

Figure 24.15 Making the zero-nulling resistor process independent.
Figure 24.17 Feeding back a current indirectly to avoid the RHP zero.
CLASS-A STAGE: SLEWING

Use the long-channel sizes and biasing seen in Table 9.1.

Figure 21.18 Slew rate limitations in a class A amplifier.

Figure 21.19 Verifying the results in Ex. 21.5
Bias voltages come from Fig. 20.47 (short-channel parameters in Table 9.2). Unlabeled NMOS are 50/2, while unlabeled PMOS are 100/2.

Figure 20.49 Biasing with a floating current source.
• Note that in this schematic, indirect compensation is used.
 • Cc is connected between \(v_{\text{out}} \) and an internal low-impedance node.
 • For Miller compensation, connect Cc between nodes 1 and 2.
 • \(V_{\text{bias5}} \) is generated using a replica bias circuit.
FOLDED-CASCODE STAGE

Biasing from Fig. 20.47. Sizes given in Table 9.2.

Figure 24.42 A folded-cascode OTA.
Note that in this schematic, Indirect compensation is used.
- **Cc** is connected between \(V_{\text{out}} \) and an internal low-impedance node.
- For Miller compensation, connect Cc between nodes 1 and 2.

Figure 24.44 Folded-cascode op-amp with class AB output buffer.
Figure 24.48 An op-amp with an input common-mode range that extends beyond the power supply rails and that can drive heavy loads.
• Note that in this schematic, Indirect compensation is used.
 • Cc is connected between \(v_{\text{out}} \) and an internal low-impedance node
• For Miller compensation, connect Cc between nodes 1 and 2.
CADENCE SPECTRE STB ANALYSIS
The STB analysis linearizes the circuit about the DC operating point and computes the loop-gain, gain and phase margins (if the sweep variable is frequency), for a feedback loop or a gain device [1].

Pay attention to the iprobe component (from analogLib)
- Acts as a short for DC, but breaks the loop in stb analysis
- Place the probe at a point where it completely breaks (all) the loop(s).
Annotating the node voltages and DC operating points of the devices helps debug the design.
Check device gds to see if its in triode or saturation regions.
SIMULATION SETUP
BODE PLOT SETUP

- Results -> Direct Plot -> Main Form
OPEN-LOOP RESPONSE (BODE PLOTS)

Here, $f_{un} = 152.5$ MHz, $PM = 41.8^\circ$

Best to use the stb analysis with circuit is in the desired feedback configuration

- Break the loop with realistic DC operation points
Observe the ringing (PM was 41°)
- Compensate more (↑ Cc and/or ↑ g_{m2})
LARGE STEP RESPONSE

Note the slewing in the output

- Class-A: I_2/C_L
- Class-AB: I_{SS}/C_C
XF ANALYSIS (FOR CMRR, PSRR)

- For CMRR and PSRR plots, you can use `xf` analysis.
- Set up your testbench sources for the supplies (of course), but also a source representing the common mode voltage.
- Then run an `xf` analysis and tell it where the output of the circuit.
- You can then plot the transfer function from every source to the differential output of the circuit.

XF ANALYSIS

- XF analysis simultaneously computes individual transfer functions from every independent source to a single output.
TWO-STAGE OPAMP COMPENSATION TECHNIQUES
Compensation capacitor (C_c) between the output of the gain stages causes pole-splitting and achieves dominant pole compensation.

An RHP zero exists at $z_1 = \frac{g_{m2}}{C_c}$

- Due to feed-forward component of the compensation current (i_C).

The second pole is located at $-\frac{g_{m2}}{C_1 + C_2}$

The unity-gain frequency is $f_{un} = \frac{g_{m1}}{2\pi C_c}$

A benign undershoot in step-response due to the RHP zero

All the op-amps presented have been designed in AMI C5N 0.5μm CMOS process with scale=0.3 μm and $L_{min}=2$. The op-amps drive a 30pF off-chip load offered by the test-setup.
DRAWBACKS OF MILLER COMPENSATION

- The RHP zero decreases phase margin
 - Requires large C_C for compensation (10pF here for a 30pF load!).
- Slow-speed for a given load, C_L.
- Poor PSRR
 - Supply noise feeds to the output through C_C.
- Large layout size.
An indirect-compensated op-amp using a common-gate stage.

- The RHP zero can be eliminated by blocking the feed-forward compensation current component by using:
 - A common gate stage,
 - A voltage buffer,
 - Common gate “embedded” in the cascode diff-amp, or
 - A current mirror buffer.
- Now, the compensation current is fed-back from the output to node-1 indirectly through a low-Z node-A.
- Since node-1 is not loaded by C_C, this results in higher unity-gain frequency (f_{un}).
INDIRECT (CASCODE) COMPENSATION

Indirect-compensation using cascoded current mirror load.

Indirect-compensation using cascoded diff-pair.

Employing the common gate device “embedded” in the cascode structure for indirect compensation avoids a separate buffer stage.

✓ Lower power consumption.

✓ Also voltage buffer reduces the swing which is avoided here.
The compensation current (i_C) is indirectly fed-back to node-1.

R_C is the resistance attached to node-A.
Resistance r_{oc} is assumed to be large.

The small-signal model for a common gate indirect compensated op-amp topology is approximated to the simplified model seen in the last slide.

$$g_{mc} \gg r_{oc}^{-1}, \quad R_A^{-1}, \quad C_C \gg C_A$$
Indirect Compensation: Equations

\[
\frac{v_{out}}{v_s} = -A_v \left(\frac{1 + b_1 s}{1 + a_1 s + a_2 s^2 + a_3 s^3} \right)
\]

\[z_1 \approx \frac{1}{R_c C_c} \text{ LHP zero}\]

\[p_1 \approx -\frac{1}{a_1} = -\frac{g_{m2} R_2 R_1 C_c}{g_{m2} R_1 C_c} \approx \frac{g_{m2} C_c}{C_L C_1}\]

\[p_2 \approx \frac{a_1}{a_2} = -\frac{g_{m2} R_1 C_c}{C_2(R_c C_c + R_1 C_1)}\]

\[p_3 \approx \frac{a_2}{a_3} = -\left[\frac{1}{R_c C_c} + \frac{1}{R_1 C_1} \right]\]

\[f_{un} = \frac{|p_1| A_v}{2\pi} \approx \frac{g_{m1}}{2\pi C_c}\]

- Pole \(p_2\) is much farther away from \(f_{un}\).
 - Can use smaller \(g_{m2}\) => less power!
- LHP zero improves phase margin.
- Much faster op-amp with lower power and smaller \(C_c\).
- Better slew rate as \(C_c\) is smaller.
EFFECT OF LHP ZERO ON SETTLING

- In certain cases with indirect compensation, the LHP-zero ($\omega_{z,LHP}$) shows up near f_{un}.
 - Causes gain flattening and degrades PM
 - Hard to push out due to topology restrictions
- Ringing in closed-loop step response
 - Used to be a benign undershoot with the RHP zero, here it can be pesky
 - Is this settling behavior acceptable?
- Watch out for the $\omega_{z,LHP}$ for clean settling behavior!
- When using indirect compensation be aware of the LHP-zero induced transient settling issues
REFERENCES

REFERENCES

