2nd order DSM

\[V(z) = u(z) + \left(1 - z^{-1}\right) e(z) \]

V(z) = \frac{y}{1-z^{-1}}

"Double-differential hysteresis of quantization noise"

\[\text{NTF}(z) = \left(1 - z^{-1}\right) \]

Band quantization noise

\[\text{IBN} = \frac{\Delta^2}{12\pi} \left(\frac{\pi}{\text{OSR}} \right)^3 \int_0^{\pi/\text{OSR}} |1 - e^{-j\omega}|^2 d\omega = \frac{\Delta^2}{12\pi} \left(\frac{\pi}{\text{OSR}} \right)^3 \int_0^{\pi/\text{OSR}} \omega^4 d\omega \]

\[= \frac{\Delta^2}{12\pi} \cdot \frac{\pi^5}{5} \cdot \left(\frac{\pi}{\text{OSR}} \right)^3 \]

\[= \frac{\Delta^2 \pi^4 \text{OSR}^5}{60} \]

\[2 \times \text{OSR} \approx 15 \text{dB} \rightarrow \text{SNR} \approx 2.5 \text{ bit} \rightarrow \text{in 8-bit resolution} \]
Example: quantize \(N_0 \) 4 bits resolution

\[ASR = 6.4 \]

\[N_{\text{inc}} = 2.5 \log_2(64) = 6 \cdot \frac{5}{2} = 15 \text{ bits} \]

\[N_{\text{eq}} = N_0 + N_{\text{inc}} = 4 + 15 = 19 \text{ bits} \]

\[\Rightarrow 16 \text{ levels } \Delta E^2 \rightarrow 2^{19} = 512 \times 10^3 \text{ levels} \]

Can't get this much resolution with Nyquist rate ADC's.

\[N\!F\!T(z) = (1-z^{-1})^2 \]

\[h[n] = [1, -2, 1]. \]

\[N\!F\!T \text{ gain at } \omega = \pi \]

\[= |N\!F\!T(e^{j\omega})| \omega = \pi \]

\[= \sum_n (\pi)^n h(n) = 4. \]

\[\sum_{n=0}^{\infty} |h[n]| \approx \rightarrow \text{ we'll see later} \]

\[\text{lots of gain at the frequencies where we wish the quantization noise to be low very low.} \]
move the delay into the loop filter

⇒ No delayfree loops!

⇒ first sample of the impulse response = 1

⇒ no zero-delay loops.

Any output comes out with at least a unit delay ⇒ first sample is always \(s[n] \).

Ex. \[\text{NTF}(z) = 1 - z^{-1} \]

\[\text{Ex.} \quad \text{NTF}(z) = (1 - z^{-1})^2 = 1 - 2z^{-1} + z^{-2} \]

Notice that:

\[\sum_{n} h[n] = 0 \Rightarrow \text{dc gain} = 0 \Rightarrow \text{High-pass response} \]

⇒ NTF response is always a HP response

⇒ RDJ = 1

and \(\sum_{n} h[n] = 0. \)
\[H(z) = 1 \Rightarrow NTF(z) = \frac{1}{H(z)} \]

\[NTF(z) = H[z] + H[z]z^{-1} + H[z]z^{-2} + \ldots \]

\[\Rightarrow NTF(z^{-\infty}) = H[0] = 1. \]

If \(H[0] \neq 1 \Rightarrow \) NOT a physically realizable NTF.

Further understanding of the quantization noise in the loop.

Where \(Y(z) = V(z) - E(z) = STF(z) \cdot U(z) + NTF(z) \cdot E(z) - E(z) \)

\[\Rightarrow STF(z) \cdot U(z) + (NTF(z) - 1) \cdot E(z) \]

In the time-domain:

- \(STF \equiv 1 \) at low frequencies
 \Rightarrow input will appear without any change at the output of the loop filter.

- How about the quantization noise?

\[NTF(z) \downarrow \Rightarrow H[n] - S[n]. \]

The quantization noise is injected as \(E[n] \) into the loop and appears back at the loop filter output \(y[n] \).
Ex.

\[\text{NTF}(z) = 1 - z^{-1} \]

IBG = \omega

OBC = 2

\[\text{NTF}(z) = (1 - z^{-1})^2 \]

IBG = \omega^2

OBC = 4

SEE MATLAB

"wiggling is larger."

"AccumDataDem.m"

\[\text{firstOrderDem.m} \]

\[z^2 \text{ order } (1 - z^{-1})^2 \]

1 LSB jumps

Larger 2^2 LSB jumps

More OBC \Rightarrow \text{larger jumps in terms of the LSBs.}

- How to find the jum magnitude \(\delta \) from the NTF(2)?

L\(\delta \) gain by the maximum accumulation of the quantization error at the output of the loop filter.

\[y[n] = u[n] + e[n] \otimes (h[n] - 1) \]

Consider only noise

\[\Rightarrow \text{noise} = e[n] \otimes (h[n] - 1) = e[n] \otimes g[n] \]

where \(g[n] = h[n] - 1 \).
Accumulated noise \(= e[n] \circ (-h[n-1]) = e[n] \circ g[n] \)
\[
= \sum_{i=0}^{\phi} g[i] e[n-i] \quad g[n] \text{ is causal}
\]
\[
\leq \sum_{i=0}^{\phi} |g[i]| |e[n-i]|.
\]
\[
\leq \frac{\Delta}{2} \sum_{i=0}^{\phi} |g[i]| \quad \rightarrow \quad ||g[n]||_1 \quad 1\text{-norm of } g[n].
\]
\[
= \frac{\Delta}{2} \sum_{i=0}^{\phi} |g[i]| \quad \rightarrow \quad \frac{\Delta}{2} \cdot ||h[n]-1||_1 \quad \text{Key quantity.}
\]

After some "hand-waving" intuition

Max. LSB jump = 2 \times \text{ Accumulated noise} = \Delta \cdot ||h[n]-1||_1

Example: ① \(NTF(z) = (1-z^{-1}) \)

Max. LSB jump = \(\Delta \cdot 1 = \Delta \cdot 1 = 1 \text{ LSB} \)

② \(NTF(z) = (1-z^{-1})^2 = 1-2z^{-1}+z^{-2} \)

Max. LSB jump = \(\Delta \cdot (121+111) = 3\Delta = 3 \text{ LSB's} \)

How about third- or higher order?

\(NTF(z) = (1-z^{-1})^N \)

\(\Rightarrow \text{IBN} = \frac{\Delta^2}{12\pi} \int_0^{\pi/\text{OSR}} \omega^2 \text{d}\omega \)

\[
= \frac{\Delta^2 \cdot \pi}{12\pi} \left[\frac{2^{N+1}}{(2N+1)} \right]_{0}^{\pi/\text{OSR}}
\]

\[
= \frac{\Delta^2 \pi^{2N+1}}{12 \pi (2N+1)} \cdot \text{OSR}
\]

\(\Rightarrow 3 \times (2N+1) \text{ dB} \) per 2 \times \text{OSR}

\(\Rightarrow (N+\frac{1}{2}) \text{ bit increase in resolution} \)

for 2 \times \text{OSR}.

Stability issues! will come back to it later.
ECE 697 Delta-Sigma Converters Design

Lecture#8 Slides

Vishal Saxena
(vishalsaxena@u.boisetstate.edu)

© Vishal Saxena
Delta-Sigma (ΔΣ or DS) Modulation

- Use oversampling ($f_s = 2 \cdot OSR \cdot BW$) to shape the quantization noise out of the signal band.
- Use low-resolution ADC and DAC to higher much higher resolution
 - In MATLAB, Quantizer = ADC + DAC
- Digitally filter away the out-of-band shaped (modulated) noise.
- Trades-off SNR with oversampling ratio.

© Vishal Saxena
First-order Noise Shaping

DSM time-domain Simulation

DSM Output Spectrum

File: First_Order_DSM.m

© Vishal Saxena
Second-order Noise Shaping

File: Second_Order_DSM.m

© Vishal Saxena
Comparison: 1st and 2nd order modulator waveforms

- NTF(z) = (1- z^{-1})
- OBG = 2
- Max LSB jump = 1

- NTF(z) = (1- z^{-1})^2
- OBG = 4
- Max LSB jump = 3
Third-order Noise Shaping (trivial design)

- \(\text{NTF}(z) = (1-z^{-1})^3 \)
- \(\text{OBG} = 8 \), Full-scale input.
- Unstable after few samples (look at \(y[n] \) blowing up).
 - Worst for a single-bit quantizer.

File: Third_Order_DSM.m
Third-order Noise Shaping contd.

- Input amplitude = 0.5 \cdot FS
- Signal dependent stability.
 - Need to develop intuition for modulator stability.
 - Reference: Stability theory from the Yellow book of delta-sigma.

File: Third_Order_DSM.m