Distributed feedback path around the quantizer:

\[\text{L'(s)} = \frac{K_0 + \frac{K_1}{s} + \frac{K_2}{s^2}}{s} \]

We had \[L(z) = \frac{-2z+1}{(z-1)^2} \] Extra feedback path provides the extra control parameters in the loop response.

Now if when the ELT is completely compensated:

\[R_0 Z^{-1} + k_1 (\text{RHS of } A) + k_2 (\text{RHS of } B) = \frac{(2z+1)}{(z-1)^2} = \frac{2z-1}{(z-1)^2} \]

Going through the algebra we get:

\[0.5z^2k_2 - 2k_1 + k_0 = 0 \]
\[0.5z^2 - 2 + 0.5z^2 \]
\[(6.5z^2 + 1-2)k_1 + k_0 = 2 \]
\[-(0.5z^2 - 2)k_2 + (1-2z)k_1 + 2k_0 = 1 \]

Solving this set of equations we get:

\[\{k_0, k_1, k_2\} = \{0.5z^2 + 0.5z^2, 1.5 + 2, 2\} \]

Verify for \(z = 0 \), \(\{k_0, k_1, k_2\} = \{0, 1.5, 2\} \) same as \(x_k \).

\(\Rightarrow k_1 \) is turned on and \(k_0 \) is added.

Lo this process requires one to go back and forth the \(s \) and \(z \) domain.

Ladder algebra is powerful for higher order modulators.
Pavan's solution for loop filter comprising of ideal integrators (no resonators).

The technique:

If the CT ΔΣ loop filter is

\[L(s) = \frac{k_1}{s} + \frac{k_2}{s^2} + \cdots + \frac{k_n}{s^n} \]

with no external delay.

What value of coefficients \(\{k_1, k_2, \ldots, k_n\} \) must be chosen so that the NTI remains same even when there is an ELD of \(T \).

Conceptually we can compensate for ELD by cascading \(L(s) \) with a block with \(TF \equiv e^{st} \).

![Block Diagram](image)

Clearly, \(e^{st} e^{-st} = e^{2st} \) \((t + T)^{-1} \) is non-causal.

It is not realizable in practice.

We get an interesting case when the input is piecewise constant and we are only interested in the sampled output. \(L \) can be reinterpreted to obtain

\[\hat{F}(s) = H(s) e^{st} = \frac{k_1 e^{st}}{s} + \frac{k_2 e^{st}}{s^2} + \cdots + \frac{k_n e^{st}}{s^n} \]
A. NRZ DAC

For NRZ DAC, expand e^{st} as the polynomial is s^i, such that

\[\frac{e^{st}}{s^i} \text{ is truncated beyond the } i^{th} \text{ power.} \]

\[\frac{1}{s^i} (1 + s^2 t + \frac{s^{2i} t^2}{2}) = \frac{1}{s^i} + \frac{t}{s} + \frac{t^2}{s^2} \rightarrow (2) \]

\[\frac{e^{st}}{s^i} \rightarrow \frac{1}{s^i} (1 + \cdots + \frac{s^i t^i}{i!}) = \frac{1}{s^i} + \frac{t}{s^{i-1}} + \frac{t^2}{s^2} \rightarrow (3) \]

Then, the loop filter $H(z)$, whose samples are identical to $L(z)$, are given by the weighted summation of the RHS of these equations by k_1, \ldots, k_n, respectively.

\[L(z) = \frac{(k_1 z^2 + k_2 \frac{z^2}{2} + \cdots + k_n \frac{z^n}{n!})}{L} + \left(\frac{k_1 + k_2 z + \cdots + k_n \frac{z^{n-1}}{n-1}}{s} \right) + \cdots \]

\[\Rightarrow \quad k_0' = k_1 z + k_2 \frac{z^2}{2} + \cdots + k_n \frac{z^n}{n!} = \sum_{i=1}^{n} k_i \frac{z^i}{i!} \]

\[k_1' = k_1 + k_2 z + \cdots + k_n \frac{z^{n-1}}{n-1} = \sum_{i=1}^{n} k_i \frac{z^{i-1}}{i-1} \]

\[k_n' = k_n \]

Verify the result for the second order case

by using $\{k_1, k_2\} = \{1, 5, 13\}$
Proof:

$u(t)$ — unit step function integrated K times,

$u(t) = u(t)$ — unit step function

The DAC pulse is $u(t) - u(t-1)$, initially assume $z = 0$

$y_i(t)$ — output of the i^{th} integrator.

No order of the loop

$y_i(t)$ — output

we have

$y_i(t) = \sum_{i=1}^{N} k_i x_i(t) = \sum_{i=1}^{N} k_i (u_i(t) - u_i(t-1))$

the sampled output

$y_i[n] = \sum_{i=1}^{N} k_i x_i[n] = \sum_{i=1}^{N} k_i (u_i[n] - u_i[n-1])$

when the DAC pulse is delayed by τ, the integrator and loop filter output become $x_i(t-\tau)$ and $y_i(t-\tau)$.

Using Taylor series for $0 < \tau < 1$, we have the ideal sampled output of the i^{th} integrator can be expressed as:

$x_i[n] = x_i(t)\bigg|_{t=n} = x_i(t-\tau)\bigg|_{t=n} + \frac{dx_i(t-\tau)}{dt}\bigg|_{t=n} \cdot \tau + \frac{\tau}{2!} \frac{d^2 x_i(t-\tau)}{dt^2}\bigg|_{t=n} \cdot \frac{\tau^2}{2} + \cdots + \frac{\tau^n}{n!} \frac{d^n x_i(t-\tau)}{dt^n}\bigg|_{t=n} \cdot \frac{\tau^n}{n!} + \cdots$

Now, since

$\left. \frac{dx_i(t-\tau)}{dt} \right|_{t=n} = x_i(t-\tau) \frac{dx_i(t-\tau)}{dt} \bigg|_{t=n} = 0$

(1) reduces to

$x_i[n] = \left[x_i(t-\tau) + \frac{\tau}{2!} x_i(t-\tau) + \frac{\tau^2}{3!} x_i(t-\tau) + \cdots + \frac{\tau^n}{n!} x_i(t-\tau) \right] \bigg|_{t=n}$
\[
\frac{f(t)}{L} = \frac{f(0)}{L} + \frac{f(t_0)}{L} \frac{(t-t_0)}{L} + \frac{f''(t)}{L} \frac{(t-t_0)^2}{L^2} + \cdots + \frac{f^{(n)}(t)}{L} \frac{(t-t_0)^n}{L^n} + \cdots
\]

\[
f(t) = x_i(t)
\]

\[
t_0 = \frac{t-2}{n}
\]

\[
x_i(t) = x_i(t-2) + \frac{x_i'(t-2)}{2} + \cdots + \frac{x_i^{(n)}(t-2)}{n!}
\]

\[
x_i(t) \bigg|_{t=n} = x_i(t-2) \bigg|_{t=n} + \frac{x_i'(t-2)}{2} \bigg|_{t=n} + \cdots + \frac{x_i^{(n)}(t-2)}{n!} \bigg|_{t=n}
\]

\[
x_i(t-2) = x_{i-1}
\]

\[
x_0'(t-2) = 0
\]

\[
x_i[n] = \left[x_i(t-2) + \frac{x_i'(t-2)}{2} + \cdots + \frac{x_i^{(n)}(t-2)}{n!} \right] \bigg|_{t=n}
\]

\[
\frac{1}{s^n} + \frac{2}{s^{n-1}} + \cdots + \frac{n!}{s} = \frac{1}{s^n} \left[e^{st} \right]_{t=0}^{t=\text{final}}
\]
\[\hat{H}(s) = L(s) e^{ST} = k_1 \frac{e^{ST}}{s} + k_2 \frac{e^{2T}}{s^2} + \cdots + k_n \frac{e^{nT}}{s^n}. \]

\[x_0(t) = u(t) - u(t-1) \]

\[x_1(t) \]

\[x_0(n) = x_0(n-2) + 2x_0(n-2) \]

\[x_1(n) = x_1(n-2) + 2x_1(n-2) \]

\[x_2[n] \text{ can be determined from } x_2[n-2], x_1[n-2] \text{ and } x_0[n-2]. \]

\[x_2(n) \]

\[x_2(n) \text{ can be linearly combined to estimate green dots.} \]
1) Even with delayed DAC pulse, the ideal output samples of the i^{th} integrator can be generated by combining the output samples of the i^{th} integrator and the preceding $(i-1)$ integrators as well as the input to the loop filter $x(t-2)$.

2) In frequency domain, we can say that the output samples of the i^{th} integrator, can be obtained by sampling the output of a filter whose transfer function is given by

$$\frac{1}{s^i} + \frac{s}{s^i} + \cdots + \frac{1}{L_i} s \frac{s}{s^i} = \frac{1}{s^i} e^{sL_i}$$

3) TF of the compensated loop filter is given by

$$\hat{L}(s) = \frac{k_{o1}}{s^m} \left(1 + sZ + \frac{s^2Z^2}{L_1} + \cdots + \frac{s^mZ^m}{L_m}\right)$$

$$\cdots + \frac{k_{oi}}{s^i} \left(1 + sZ + \frac{s^2Z^2}{L_1} + \cdots + \frac{s^mZ^m}{L_m}\right)$$

$$\cdots + \frac{k_{o1}}{s} (1 + sZ)$$

4) From 3) the direct path comes out as a direct consequence

$$k_{o1}' = k_{i1}Z + k_{i2} \frac{Z^2}{L_1} + \cdots + k_{io} \frac{Z^{io}}{L_m}$$
(i) \(z < 0.5 \), the order of the system doesn't increase.

L-ELD compensation alone by careful tuning

same as NRZ derivation, but the expansion of \(e^{zT} \) in \(\frac{e^{zT}}{s^i} \) is

truncated after \((i-1)\)th power of \(s \).

\[
\frac{e^{zT}}{s^i} \rightarrow \frac{1}{s^i} \left(1 + \frac{(zT)^{i-1}}{(i-1)!} \right) = \frac{1}{s^i} + \frac{z}{s^{i-1}} + \frac{z^{i-1}}{s^{i-1} \cdot i-1}
\]

\(z \) is the compensated loop \(TF \) is

\[
\gamma(s) = \frac{k_i + k_{i+1}z + \cdots + k_nz^{n-1}}{s^i} = \frac{k_i + k_{i+1}z + \cdots + k_nz^{n-1}}{s^i}
\]

(ii) \(z > 0.5 \), a direct path is necessary in addition to coefficient term.

Let see ref. for details.

3) Simple Randle-when all is s-domain!

Lo method requires that the higher order derivatives of the \(n^{th} \) integrator's output become 0 when driven by a piecewise constant Dirac pulse.

Lo true when NTF with complex zeros is used.

Lo false responses now contain sine and cosine.

Lo no easy solution exist "

Lo the low-pass formulas do an acceptable job of stabilizing the

loop-delay for large OSR, but-pass OSMs.

Lo No Solution \(\rightarrow \) BP-OSMs.
Issues with Table-based method:

- Certainly need mathematical analysis for better understanding of the system.
- The algebra (for the general case) is tedious and uncertain.
 - TF of real ramp have several poles/zeros due to finite Amp, etc. (assuming Atami-like implementation).
 - Obtaining their pole/zero locations not an easy task.

- The system may not have a solution when the integrators are non-ideal and the poles of $L(x)$ are different from the poles of the integrator paths.
 - E.g., for integrator with finite gain, poles of real log filter will not be at $\omega = 1$.
 - Can not be solved.
Numerical fitting approach

To implemented in the realize NTF \(z \) functions.

\[\mathbf{e}[z] \rightarrow \text{column vectors of } \mathbf{N} \text{ samples} \]

\[\text{eg for } \text{NTF}(z) = (1-z)^{-2}, \text{ we have} \]

\[\mathbf{e}[z] = [0 \ 2 \ 3 \ \ldots \]^T. \]

The column vectors formed by \(\mathbf{N} \) samples of the filter responses of the direct path and the integrator outputs are denoted as

\[\mathbf{e}_0[z] = [0 \ 1 \ 0 \ \ldots \]^T \]

\[\mathbf{e}_1[z] = [0 \ (1-z) \ 1 \ \ldots \]^T \]

\[\mathbf{e}_2[z] = [0 \ 0.5(1-z)^2 \ (1.5-z) \ \ldots \ (N-0.5-z)]^T \]

Choose \(\mathbf{n} \) such that it is much longer than the number of unknowns to be determined. Then we have the weighting coefficient \(\mathbf{K} = [-k_0, k_1, k_2]^T \) determined by solving

\[\begin{bmatrix} \mathbf{e}_0[z] & \mathbf{e}_1[z] & \mathbf{e}_2[z] \end{bmatrix} \mathbf{K} = \mathbf{h}[z]. \]

\[
\begin{bmatrix}
1 & 1-z & 0.5(1-z)^2 \\
0 & 1 & 1.5-z \\
0 & 1 & N-0.5-z
\end{bmatrix}
\begin{bmatrix}
k_0 \\
k_1 \\
k_2
\end{bmatrix}
=
\begin{bmatrix}
d_0 \\
d_1 \\
d_2
\end{bmatrix}
\]

More equations than unknowns, with ideal integrators, the above set of equations admit a unique solution. \(\Rightarrow \) \(\mathbf{K} \) is independent of \(\mathbf{N} \).

Let\(\mathbf{d}_0 \) boost away with tedious algebra. Heavily obtained from simulation and

(1) Other issues when real opamps are used
(2) Read paper by Shanthi.