SpectreRF Periodic Analysis
Switched capacitor Circuit Simulation
Agenda

- Sampled data systems
- Brief explanation and usage of PAC/PXF analyses in SpectreRF
- PNOISE Analysis
- Simulation Examples
 - Simple S/H
 - Switch capacitor buffer
 - T/R
SpectreRF Analyses

- PSS – Periodic Steady State Analysis
- PAC – Periodic AC Analysis
- PSTB – Periodic Stability Analysis
- PXF – Periodic Transfer Function
- PNoise – Periodic Noise Analysis
- PDist – Periodic Harmonic Distortion Analysis
- QPSS?
PSS Analysis

- **Periodic Steady-State Analysis**
- PSS calculates the period operating point
 - Required for other small-signal analyses (PAC, PXF, PNoise)
 - Only clock is applied, transient input disabled

- **PSS Cadence parameters**
 - *harmonics* specifies requested output harmonics to be viewed
 - *maxacfreq* is an accuracy parameter that specifies the maximum frequency that will be used in any subsequent small-signal analyses (4xharmonics by default)
 - Recommended formula:
 - f_{stop} is maximum frequency of PAC/PXF/etc. sweep range
 - *maxsideband* specified in PAC/PXF/etc.
 - f_s is clock frequency
SpectreRF Analysis Forms

Periodic Steady State Analysis

<table>
<thead>
<tr>
<th>#</th>
<th>Name</th>
<th>Expr</th>
<th>Value</th>
<th>Signal</th>
<th>SrcId</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>$1/(1\text{Cn}-0)$</td>
<td>Large</td>
<td>V0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>$1/(1\text{Cn}-0)$</td>
<td>Large</td>
<td>V39</td>
<td></td>
</tr>
</tbody>
</table>

- Clear/Add
- Delete
- Update From Schematic

- Beat Frequency: 100MHz
- Beat Period: Auto Calculate

Output harmonics
- Number of harmonics: 1

Accuracy Defaults (default)
- Conservative
- Moderate
- Liberal

Additional Time for Stabilization (tstab):

Save Initial Transient Results (saveinit): no

Oscillator:

Sweep:

Enabled:

Options...

TIME STEP PARAMETERS
- step:
- maxstep:

INITIAL CONDITION PARAMETERS
- ic:
- icdef:
- mon:
- skipic: yes
- noskipic:
- residic:

CONVERGENCE PARAMETERS
- readcon:
- conin:

STATE FILE PARAMETERS
- write:
- writeint:
- swapinit:
- writepp:
- readpp:
- checkpp: yes
- no

INTEGRATION METHOD PARAMETERS
- method:
- order:
- trap:
- traaponly:
- tsbmethod:
- order:
- trap:
- traaponly:
- gear2:
- gear2only:

ACCURACY PARAMETERS
- strict:
- strictlocal:
- strictglobal:
- siglocal:
- sigglobal:
- itera:
- steady:
- maxach:
- maxach:
- maxach:
- maxach:
- maxach:
- finite: yes
- refine: no
- highorder: yes
- no
PAC Analysis

- Periodic AC Analysis

- PAC “computes the output signal at every node and every sideband given a single input”\(^1\)
 - Creates a mapping between an input freq range and each resulting output freq range due to modulation
 - Use PAC to find how an interesting input frequency is modulated and attenuated to resulting frequencies at the output

- PAC Cadence parameters
 - Specified sweep frequency is the INPUT frequency range
 - maxsideband determines the number of output frequency bands calculated by Cadence to which the input range is modulated
 - Set pacmagnitude in source to 1V
 - Can choose any circuit node as PAC output
PAC Analysis

- Sweeping PAC input frequency from 0 → fs/2 shows the modulation of the input signal baseband into all of the specified output bands…perfect for nyquist band limited input signals
- Sweeping past fs/2 shows the modulation of higher input signal bands into all of the specified output bands
Periodic Transfer Function Analysis

PXF “computes the transfer function from every input source at every sideband to a single output”¹
- Creates mapping between a particular output frequency and the combination of modulated input frequencies that compose it
- Use PXF to find the input frequency composition of an interesting output frequency

PXF Cadence parameters
- Specified sweep frequency is the OUTPUT frequency range
- maxsideband specifies the number of input frequency bands calculated by Cadence that are modulated into the output frequency range
- Set specific output node in analysis form
- Can choose any source in the circuit to view XF to the output
- Sweeping PXF from 0 → fs/2 shows how all of the chosen input frequency bands modulate into the output baseband
- Each color curve segment represents the output baseband where the starting harmonic is DC
Sweeping PXF past fs/2 shows how the specified input frequency bands modulate into higher output bands.
Comment About PAC/PXF Sweep Type

- Previous results have been plotted for linear sweeps
- Logarithmic sweeps refer all waveforms into frequency sweep range:
 - **PAC** – all output sidebands are shown as folded into the input frequency sweep range. Output signal frequency information not shown.
 - **PXF** – input sideband contributions are folded into output frequency sweep range. Information relating contributions to input frequencies not shown.
- Example: PAC linear sweep (left), log sweep (right, changed to lin axis)
PXF vs PAC

PAC
I know my input signal, how does this become my output signal?

PXF
I know my output signal, how does this come from my input signal?
SpectreRF PAC/PXF Analysis Forms

Periodic AC Analysis
- **PSS Beat Frequency (Hz)**: 100M
- **Sweep Type**: Linear
- **Add Specific Points**: off
- **Sidebands**: Maximum sideband
- **Specialized Analyses**: off
- **Enabled**: off

Periodic XF Analysis
- **PSS Beat Frequency (Hz)**: 100M
- **Sweep Type**: Linear
- **Add Specific Points**: off
- **Sidebands**: Maximum sideband
- **Output**: voltage, probe
- **Enabled**: off

© Vishal Saxena
- Simulation of noise in sampled circuits
- Example: Switch-C circuit
 - Here an NMOS switch with $C=1\mu F$, $f_{\text{clk}}=10\text{MHz}$
- Set up PSS analysis for the $f_{\text{clk}}=10\text{MHz}$ clock
Include sufficient number of \textit{maxsideband} for accuracy
Simulation shows 89\,\mu V of output RMS noise
- Ideal \sqrt{(kT/C)} value =64\,\mu V,
- Simulation results close to the approximation of \sqrt{(kT/C)}
Accuracy is tightened by using large number of *maxsideband* parameter

- Determines how many sideband alias into the given band
- Trades-off simulation time with accuracy

For analytical details, refer to:
Sampled Signal Analysis

• A Sample and hold (S/H) is analyzed in the time domain as an ideal sampler in cascade with a zero-order hold (ZOH)

\[
v_{SH} = v_S \ast ZOH = (v_A \cdot v_D) \ast ZOH
\]

\[
v_D(t) = \sum_{k=-\infty}^{\infty} \delta(t - kT_s)
\]

• The ideally sampled signal \(v_S(t) \) is obtained by multiplying input with periodic pulse train
Sampled Signal Analysis

- The frequency spectrum of the impulse train is found from the Fourier transform of the Fourier series representation

\[v_D(t) = \sum_{k=-\infty}^{\infty} \delta(t - kT) = \sum_{n=-\infty}^{\infty} \frac{1}{T} e^{jn2\pi ft} \Leftrightarrow V_D(f) = \sum_{n=-\infty}^{\infty} f_s \cdot \delta(f - nf_s) \]

- Multiplying with pulse train in time domain \(\rightarrow\) convolving with pulse train in frequency domain

\[f_s = \frac{1}{T_s} \]

\[|V_A(f)| \quad * \quad |V_D(f)| \quad \Leftrightarrow \quad |V_S(f)| \]

\[f_s \delta(\Omega) \quad \Rightarrow \quad f_s V_A(f) \]
Sampled Signal Analysis

- The S/H output is found by convolving $v_S(t)$ with the cascaded ZOH impulse response (a unit pulse, a fraction of the sampling period)

- Convolving with ZOH in time domain \rightarrow multiplying with sinc in frequency domain

$$v_S(t) \star \frac{T}{T_s} = m \left[\begin{array}{c} 1 \\ T \\ \text{d} \\ T_s \end{array} \right] = v_{SH}(t)$$

$$v_{SH}(t) = mT_s \cdot \text{sinc} \left(m \frac{f}{f_s} \right)$$
Sampled Signal Analysis

• Result is the baseband filtered by the sinc main lobe, plus frequency periodic baseband replicas filtered by the sinc side lobes

\[
V_{SH}(f) = mT_s \cdot \text{sinc}_\pi \left(m \frac{f}{f_s} \right) \cdot \sum_{n=-\infty}^{\infty} f_s \cdot V_s(f - nf_s) = m \text{sinc}_\pi \left(m \frac{f}{f_s} \right) \sum_{n=-\infty}^{\infty} V_s(f - nf_s)
\]

• Shape of sinc function (and filtering of spectrum) depends on S/H duty cycle (m)
 • \(m \ll 1\): sinc is wide but short, attenuation but little shaping of baseband or near images
 • \(m = 1\): sinc thin and tall, significant shaping of baseband and images, zeros at \(f = nf_s\)
Sampled Signal Analysis

- Sampling into the digital domain (A/D converter) acts as an ideally sampled system and replicates the spectrum at all clock harmonics.
- Any spectrum energy outside of the Nyquist range gets folded/aliased into baseband.
- SNR need be considered only within $f=0 \rightarrow fs/2$ because spectrum is symmetric about DC and repeats every fs (DTFT).
PXF/PAC Analyses for Basic Applications

- Ideal Sample and Hold (S/H)
- RC Band-limited S/H
- Switch Capacitor (SC) Buffer
Ideal Sample and Hold (S/H)
Expectation: Ideal S/H

- Assume a unity, Nyquist band-limited input
- Like a input band limited AC analysis (like a PAC)

\[|V_A(f)| \ast |V_D(f)| = |V_S(f)| \]

\[|V_S(f)| \times |ZOH(f)| = |V_{SH}(f)| \]
PAC: Ideal S/H

- Sweep from $0 \rightarrow f_s/2$: only looking at how input baseband modulates into other bands
- AC input is unity over all frequencies, therefore output is the sinc shaping of the modulated input baseband

\[V_{in} \xrightarrow{\Phi_1} \rightarrow \Phi_2 \rightarrow V_o \]

- $F_{clk} = 100$ MHz
- PSS beat freq = 100M autocalculated
- maxacfreq = default
- PAC input frequency range
 - (100Hz, $f_s/2 = 50$ MHz), linear sweep, 1000 steps
 - maxsideband = 4
PXF: Ideal S/H

- Sweep from $0 \rightarrow f_s/2$: only looking at how input frequencies modulate into the output baseband
- Resulting curves only show output baseband shaping (main lobe of sinc)

$V_{in} \rightarrow \Phi_1 \rightarrow \Phi_2 \rightarrow V_o$

$F_{clk}=100 \text{ MHz}$

PSS beat freq=100M autocalculated
maxacfreq=default

PXF output frequency range (100,50M)
linear sweep, 1000 steps
maxsideband=4
PAC: RC limited S/H

- Baseband input should modulate to output bands similarly to ideal case if RC constant designed correctly (PAC)

- S/H now has limiting bandwidth, so higher input frequencies will attenuate when modulating into output baseband (PXF)

- Set $1/RC = 2\pi f_{\text{clk}} \times 7 \Rightarrow 700$ MHz: $C=1\,\text{pF}$, $R\approx 230$ ohms, $W/L=9\,\mu\text{m}/0.18\,\mu\text{m}$
PXF: RC limited S/H

- Baseband input should modulate to output bands similarly to ideal case if RC constant designed correctly (PAC)

F_{clk}=100 \text{ MHz}

PSS beat freq=100M autocalculated
maxacfreq=default

PAC input frequency range
(100Hz ,50MHz), f_s/2
linear sweep, 1000 steps
maxsideband=4
SC Buffer

- Ideal switches, no resistance
- Ideal OpAmp, no BW limit
- Sinc shaping slightly off due to reduction of duty cycle for non-overlapping phases

\[ZOH(f) = mT_s \cdot \text{sinc} \left(m \frac{f}{f_s} \right) \]
SC Buffer

• Ideal switches with resistance
• Ideal OpAmp, no BW limit

Adding the switch resistance of the SC Buffer: PAC
SC Buffer

- Ideal switches with resistance
- Ideal OpAmp with limited BW

Reducing the BW of the SC Buffer OpAmp: PAC (left) PXF (right)
Track and Reset

• Ideal track and reset:
 • Analyzed as input multiplied by pulse train
 • Result is passband modulated by pulse train tones
 • No resistance yields no shaping in bands
 • Pulse train tones off due to non-overlapping clocks
 • PAC and PXF look identical

![Periodic AC Response](chart.png)
Track and Reset

- Real track and reset:
 - Added switch resistances (R=1k, C=1p)
 - Results in shaped, modulated passbands
 - PAC: modulation from input passband into output sidebands
 - PXF: modulation from input sidebands into output passband
Track and Reset

• Real track and reset:
 • Excessive resistance (R=10k, C=1p)
Track and Reset

• Real track and reset:
 • Changing the resistance ratio scales the response
 • DC and input clk harmonics modulating to output scaled by $2R_1R_2/(R_1+R_2)$ from ideal
 • $R_1=10\,k\Omega$, $R_2=1\,k\Omega$, $C=1\,p\mu F$
References

1. SpectreRF User Manual
2. Josh Carnes and Peter Kurahasi, “Periodic Analyses of Sampled Systems Using SpectreRF”